\(\int \cot ^2(c+d x) \csc ^3(c+d x) (a+b \sin (c+d x))^2 \, dx\) [1066]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 29, antiderivative size = 123 \[ \int \cot ^2(c+d x) \csc ^3(c+d x) (a+b \sin (c+d x))^2 \, dx=\frac {\left (a^2+4 b^2\right ) \text {arctanh}(\cos (c+d x))}{8 d}+\frac {2 a b \cot (c+d x)}{3 d}+\frac {\left (a^2-2 b^2\right ) \cot (c+d x) \csc (c+d x)}{8 d}-\frac {a b \cot (c+d x) \csc ^2(c+d x)}{6 d}-\frac {\cot (c+d x) \csc ^3(c+d x) (a+b \sin (c+d x))^2}{4 d} \]

[Out]

1/8*(a^2+4*b^2)*arctanh(cos(d*x+c))/d+2/3*a*b*cot(d*x+c)/d+1/8*(a^2-2*b^2)*cot(d*x+c)*csc(d*x+c)/d-1/6*a*b*cot
(d*x+c)*csc(d*x+c)^2/d-1/4*cot(d*x+c)*csc(d*x+c)^3*(a+b*sin(d*x+c))^2/d

Rubi [A] (verified)

Time = 0.25 (sec) , antiderivative size = 123, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.276, Rules used = {2968, 3127, 3110, 3100, 2827, 3852, 8, 3855} \[ \int \cot ^2(c+d x) \csc ^3(c+d x) (a+b \sin (c+d x))^2 \, dx=\frac {\left (a^2+4 b^2\right ) \text {arctanh}(\cos (c+d x))}{8 d}+\frac {\left (a^2-2 b^2\right ) \cot (c+d x) \csc (c+d x)}{8 d}+\frac {2 a b \cot (c+d x)}{3 d}-\frac {a b \cot (c+d x) \csc ^2(c+d x)}{6 d}-\frac {\cot (c+d x) \csc ^3(c+d x) (a+b \sin (c+d x))^2}{4 d} \]

[In]

Int[Cot[c + d*x]^2*Csc[c + d*x]^3*(a + b*Sin[c + d*x])^2,x]

[Out]

((a^2 + 4*b^2)*ArcTanh[Cos[c + d*x]])/(8*d) + (2*a*b*Cot[c + d*x])/(3*d) + ((a^2 - 2*b^2)*Cot[c + d*x]*Csc[c +
 d*x])/(8*d) - (a*b*Cot[c + d*x]*Csc[c + d*x]^2)/(6*d) - (Cot[c + d*x]*Csc[c + d*x]^3*(a + b*Sin[c + d*x])^2)/
(4*d)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2968

Int[cos[(e_.) + (f_.)*(x_)]^2*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)
, x_Symbol] :> Int[(d*Sin[e + f*x])^n*(a + b*Sin[e + f*x])^m*(1 - Sin[e + f*x]^2), x] /; FreeQ[{a, b, d, e, f,
 m, n}, x] && NeQ[a^2 - b^2, 0] && (IGtQ[m, 0] || IntegersQ[2*m, 2*n])

Rule 3100

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m
+ 1)*(a^2 - b^2))), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B +
a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b,
e, f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rule 3110

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])*((A_.) + (B_.)*sin[(e
_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(b*c - a*d))*(A*b^2 - a*b*B + a^2*C)
*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b^2*f*(m + 1)*(a^2 - b^2))), x] - Dist[1/(b^2*(m + 1)*(a^2 - b^2)
), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(m + 1)*((b*B - a*C)*(b*c - a*d) - A*b*(a*c - b*d)) + (b*B*(a^2*d +
 b^2*d*(m + 1) - a*b*c*(m + 2)) + (b*c - a*d)*(A*b^2*(m + 2) + C*(a^2 + b^2*(m + 1))))*Sin[e + f*x] - b*C*d*(m
 + 1)*(a^2 - b^2)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] &&
NeQ[a^2 - b^2, 0] && LtQ[m, -1]

Rule 3127

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(c^2*C + A*d^2))*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Si
n[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Dist[1/(d*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^
(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(b*d*m + a*c*(n + 1)) + c*C*(b*c*m + a*d*(n + 1)) - (A*d*(a*d*(n
 + 2) - b*c*(n + 1)) - C*(b*c*d*(n + 1) - a*(c^2 + d^2*(n + 1))))*Sin[e + f*x] - b*(A*d^2*(m + n + 2) + C*(c^2
*(m + 1) + d^2*(n + 1)))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C}, x] && NeQ[b*c - a*d, 0]
 && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 0] && LtQ[n, -1]

Rule 3852

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Dist[-d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps \begin{align*} \text {integral}& = \int \csc ^5(c+d x) (a+b \sin (c+d x))^2 \left (1-\sin ^2(c+d x)\right ) \, dx \\ & = -\frac {\cot (c+d x) \csc ^3(c+d x) (a+b \sin (c+d x))^2}{4 d}+\frac {1}{4} \int \csc ^4(c+d x) (a+b \sin (c+d x)) \left (2 b-a \sin (c+d x)-3 b \sin ^2(c+d x)\right ) \, dx \\ & = -\frac {a b \cot (c+d x) \csc ^2(c+d x)}{6 d}-\frac {\cot (c+d x) \csc ^3(c+d x) (a+b \sin (c+d x))^2}{4 d}-\frac {1}{12} \int \csc ^3(c+d x) \left (3 \left (a^2-2 b^2\right )+8 a b \sin (c+d x)+9 b^2 \sin ^2(c+d x)\right ) \, dx \\ & = \frac {\left (a^2-2 b^2\right ) \cot (c+d x) \csc (c+d x)}{8 d}-\frac {a b \cot (c+d x) \csc ^2(c+d x)}{6 d}-\frac {\cot (c+d x) \csc ^3(c+d x) (a+b \sin (c+d x))^2}{4 d}-\frac {1}{24} \int \csc ^2(c+d x) \left (16 a b+3 \left (a^2+4 b^2\right ) \sin (c+d x)\right ) \, dx \\ & = \frac {\left (a^2-2 b^2\right ) \cot (c+d x) \csc (c+d x)}{8 d}-\frac {a b \cot (c+d x) \csc ^2(c+d x)}{6 d}-\frac {\cot (c+d x) \csc ^3(c+d x) (a+b \sin (c+d x))^2}{4 d}-\frac {1}{3} (2 a b) \int \csc ^2(c+d x) \, dx-\frac {1}{8} \left (a^2+4 b^2\right ) \int \csc (c+d x) \, dx \\ & = \frac {\left (a^2+4 b^2\right ) \text {arctanh}(\cos (c+d x))}{8 d}+\frac {\left (a^2-2 b^2\right ) \cot (c+d x) \csc (c+d x)}{8 d}-\frac {a b \cot (c+d x) \csc ^2(c+d x)}{6 d}-\frac {\cot (c+d x) \csc ^3(c+d x) (a+b \sin (c+d x))^2}{4 d}+\frac {(2 a b) \text {Subst}(\int 1 \, dx,x,\cot (c+d x))}{3 d} \\ & = \frac {\left (a^2+4 b^2\right ) \text {arctanh}(\cos (c+d x))}{8 d}+\frac {2 a b \cot (c+d x)}{3 d}+\frac {\left (a^2-2 b^2\right ) \cot (c+d x) \csc (c+d x)}{8 d}-\frac {a b \cot (c+d x) \csc ^2(c+d x)}{6 d}-\frac {\cot (c+d x) \csc ^3(c+d x) (a+b \sin (c+d x))^2}{4 d} \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(579\) vs. \(2(123)=246\).

Time = 6.75 (sec) , antiderivative size = 579, normalized size of antiderivative = 4.71 \[ \int \cot ^2(c+d x) \csc ^3(c+d x) (a+b \sin (c+d x))^2 \, dx=\frac {a b \cot \left (\frac {1}{2} (c+d x)\right ) (b+a \csc (c+d x))^2 \sin ^2(c+d x)}{3 d (a+b \sin (c+d x))^2}+\frac {\left (a^2-4 b^2\right ) \csc ^2\left (\frac {1}{2} (c+d x)\right ) (b+a \csc (c+d x))^2 \sin ^2(c+d x)}{32 d (a+b \sin (c+d x))^2}-\frac {a b \cot \left (\frac {1}{2} (c+d x)\right ) \csc ^2\left (\frac {1}{2} (c+d x)\right ) (b+a \csc (c+d x))^2 \sin ^2(c+d x)}{12 d (a+b \sin (c+d x))^2}-\frac {a^2 \csc ^4\left (\frac {1}{2} (c+d x)\right ) (b+a \csc (c+d x))^2 \sin ^2(c+d x)}{64 d (a+b \sin (c+d x))^2}+\frac {\left (a^2+4 b^2\right ) (b+a \csc (c+d x))^2 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right ) \sin ^2(c+d x)}{8 d (a+b \sin (c+d x))^2}+\frac {\left (-a^2-4 b^2\right ) (b+a \csc (c+d x))^2 \log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right ) \sin ^2(c+d x)}{8 d (a+b \sin (c+d x))^2}+\frac {\left (-a^2+4 b^2\right ) (b+a \csc (c+d x))^2 \sec ^2\left (\frac {1}{2} (c+d x)\right ) \sin ^2(c+d x)}{32 d (a+b \sin (c+d x))^2}+\frac {a^2 (b+a \csc (c+d x))^2 \sec ^4\left (\frac {1}{2} (c+d x)\right ) \sin ^2(c+d x)}{64 d (a+b \sin (c+d x))^2}-\frac {a b (b+a \csc (c+d x))^2 \sin ^2(c+d x) \tan \left (\frac {1}{2} (c+d x)\right )}{3 d (a+b \sin (c+d x))^2}+\frac {a b (b+a \csc (c+d x))^2 \sec ^2\left (\frac {1}{2} (c+d x)\right ) \sin ^2(c+d x) \tan \left (\frac {1}{2} (c+d x)\right )}{12 d (a+b \sin (c+d x))^2} \]

[In]

Integrate[Cot[c + d*x]^2*Csc[c + d*x]^3*(a + b*Sin[c + d*x])^2,x]

[Out]

(a*b*Cot[(c + d*x)/2]*(b + a*Csc[c + d*x])^2*Sin[c + d*x]^2)/(3*d*(a + b*Sin[c + d*x])^2) + ((a^2 - 4*b^2)*Csc
[(c + d*x)/2]^2*(b + a*Csc[c + d*x])^2*Sin[c + d*x]^2)/(32*d*(a + b*Sin[c + d*x])^2) - (a*b*Cot[(c + d*x)/2]*C
sc[(c + d*x)/2]^2*(b + a*Csc[c + d*x])^2*Sin[c + d*x]^2)/(12*d*(a + b*Sin[c + d*x])^2) - (a^2*Csc[(c + d*x)/2]
^4*(b + a*Csc[c + d*x])^2*Sin[c + d*x]^2)/(64*d*(a + b*Sin[c + d*x])^2) + ((a^2 + 4*b^2)*(b + a*Csc[c + d*x])^
2*Log[Cos[(c + d*x)/2]]*Sin[c + d*x]^2)/(8*d*(a + b*Sin[c + d*x])^2) + ((-a^2 - 4*b^2)*(b + a*Csc[c + d*x])^2*
Log[Sin[(c + d*x)/2]]*Sin[c + d*x]^2)/(8*d*(a + b*Sin[c + d*x])^2) + ((-a^2 + 4*b^2)*(b + a*Csc[c + d*x])^2*Se
c[(c + d*x)/2]^2*Sin[c + d*x]^2)/(32*d*(a + b*Sin[c + d*x])^2) + (a^2*(b + a*Csc[c + d*x])^2*Sec[(c + d*x)/2]^
4*Sin[c + d*x]^2)/(64*d*(a + b*Sin[c + d*x])^2) - (a*b*(b + a*Csc[c + d*x])^2*Sin[c + d*x]^2*Tan[(c + d*x)/2])
/(3*d*(a + b*Sin[c + d*x])^2) + (a*b*(b + a*Csc[c + d*x])^2*Sec[(c + d*x)/2]^2*Sin[c + d*x]^2*Tan[(c + d*x)/2]
)/(12*d*(a + b*Sin[c + d*x])^2)

Maple [A] (verified)

Time = 0.37 (sec) , antiderivative size = 142, normalized size of antiderivative = 1.15

method result size
derivativedivides \(\frac {a^{2} \left (-\frac {\cos ^{3}\left (d x +c \right )}{4 \sin \left (d x +c \right )^{4}}-\frac {\cos ^{3}\left (d x +c \right )}{8 \sin \left (d x +c \right )^{2}}-\frac {\cos \left (d x +c \right )}{8}-\frac {\ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{8}\right )-\frac {2 a b \left (\cos ^{3}\left (d x +c \right )\right )}{3 \sin \left (d x +c \right )^{3}}+b^{2} \left (-\frac {\cos ^{3}\left (d x +c \right )}{2 \sin \left (d x +c \right )^{2}}-\frac {\cos \left (d x +c \right )}{2}-\frac {\ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{2}\right )}{d}\) \(142\)
default \(\frac {a^{2} \left (-\frac {\cos ^{3}\left (d x +c \right )}{4 \sin \left (d x +c \right )^{4}}-\frac {\cos ^{3}\left (d x +c \right )}{8 \sin \left (d x +c \right )^{2}}-\frac {\cos \left (d x +c \right )}{8}-\frac {\ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{8}\right )-\frac {2 a b \left (\cos ^{3}\left (d x +c \right )\right )}{3 \sin \left (d x +c \right )^{3}}+b^{2} \left (-\frac {\cos ^{3}\left (d x +c \right )}{2 \sin \left (d x +c \right )^{2}}-\frac {\cos \left (d x +c \right )}{2}-\frac {\ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{2}\right )}{d}\) \(142\)
parallelrisch \(\frac {3 a^{2} \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-3 a^{2} \left (\cot ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+16 a b \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-16 a b \left (\cot ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+24 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b^{2}-24 b^{2} \left (\cot ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-24 a^{2} \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )-96 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b^{2}-48 a b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+48 a b \cot \left (\frac {d x}{2}+\frac {c}{2}\right )}{192 d}\) \(157\)
risch \(-\frac {-48 i a b \,{\mathrm e}^{6 i \left (d x +c \right )}+3 a^{2} {\mathrm e}^{7 i \left (d x +c \right )}-12 b^{2} {\mathrm e}^{7 i \left (d x +c \right )}+48 i a b \,{\mathrm e}^{4 i \left (d x +c \right )}+21 a^{2} {\mathrm e}^{5 i \left (d x +c \right )}+12 b^{2} {\mathrm e}^{5 i \left (d x +c \right )}-16 i a b \,{\mathrm e}^{2 i \left (d x +c \right )}+21 a^{2} {\mathrm e}^{3 i \left (d x +c \right )}+12 b^{2} {\mathrm e}^{3 i \left (d x +c \right )}+16 i a b +3 a^{2} {\mathrm e}^{i \left (d x +c \right )}-12 b^{2} {\mathrm e}^{i \left (d x +c \right )}}{12 d \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )^{4}}+\frac {a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}{8 d}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right ) b^{2}}{2 d}-\frac {a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )}{8 d}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right ) b^{2}}{2 d}\) \(260\)
norman \(\frac {-\frac {a^{2}}{64 d}+\frac {a^{2} \left (\tan ^{12}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{64 d}-\frac {\left (a^{2}+4 b^{2}\right ) \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{32 d}+\frac {\left (a^{2}+4 b^{2}\right ) \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{32 d}-\frac {\left (a^{2}+16 b^{2}\right ) \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{32 d}-\frac {\left (a^{2}+16 b^{2}\right ) \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{32 d}-\frac {a b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{12 d}+\frac {a b \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{12 d}+\frac {a b \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{6 d}-\frac {a b \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{6 d}-\frac {a b \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{12 d}+\frac {a b \left (\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{12 d}}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{2}}-\frac {\left (a^{2}+4 b^{2}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 d}\) \(287\)

[In]

int(cos(d*x+c)^2*csc(d*x+c)^5*(a+b*sin(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

1/d*(a^2*(-1/4/sin(d*x+c)^4*cos(d*x+c)^3-1/8/sin(d*x+c)^2*cos(d*x+c)^3-1/8*cos(d*x+c)-1/8*ln(csc(d*x+c)-cot(d*
x+c)))-2/3*a*b/sin(d*x+c)^3*cos(d*x+c)^3+b^2*(-1/2/sin(d*x+c)^2*cos(d*x+c)^3-1/2*cos(d*x+c)-1/2*ln(csc(d*x+c)-
cot(d*x+c))))

Fricas [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 200, normalized size of antiderivative = 1.63 \[ \int \cot ^2(c+d x) \csc ^3(c+d x) (a+b \sin (c+d x))^2 \, dx=-\frac {32 \, a b \cos \left (d x + c\right )^{3} \sin \left (d x + c\right ) + 6 \, {\left (a^{2} - 4 \, b^{2}\right )} \cos \left (d x + c\right )^{3} + 6 \, {\left (a^{2} + 4 \, b^{2}\right )} \cos \left (d x + c\right ) - 3 \, {\left ({\left (a^{2} + 4 \, b^{2}\right )} \cos \left (d x + c\right )^{4} - 2 \, {\left (a^{2} + 4 \, b^{2}\right )} \cos \left (d x + c\right )^{2} + a^{2} + 4 \, b^{2}\right )} \log \left (\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) + 3 \, {\left ({\left (a^{2} + 4 \, b^{2}\right )} \cos \left (d x + c\right )^{4} - 2 \, {\left (a^{2} + 4 \, b^{2}\right )} \cos \left (d x + c\right )^{2} + a^{2} + 4 \, b^{2}\right )} \log \left (-\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right )}{48 \, {\left (d \cos \left (d x + c\right )^{4} - 2 \, d \cos \left (d x + c\right )^{2} + d\right )}} \]

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)^5*(a+b*sin(d*x+c))^2,x, algorithm="fricas")

[Out]

-1/48*(32*a*b*cos(d*x + c)^3*sin(d*x + c) + 6*(a^2 - 4*b^2)*cos(d*x + c)^3 + 6*(a^2 + 4*b^2)*cos(d*x + c) - 3*
((a^2 + 4*b^2)*cos(d*x + c)^4 - 2*(a^2 + 4*b^2)*cos(d*x + c)^2 + a^2 + 4*b^2)*log(1/2*cos(d*x + c) + 1/2) + 3*
((a^2 + 4*b^2)*cos(d*x + c)^4 - 2*(a^2 + 4*b^2)*cos(d*x + c)^2 + a^2 + 4*b^2)*log(-1/2*cos(d*x + c) + 1/2))/(d
*cos(d*x + c)^4 - 2*d*cos(d*x + c)^2 + d)

Sympy [F(-1)]

Timed out. \[ \int \cot ^2(c+d x) \csc ^3(c+d x) (a+b \sin (c+d x))^2 \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**2*csc(d*x+c)**5*(a+b*sin(d*x+c))**2,x)

[Out]

Timed out

Maxima [A] (verification not implemented)

none

Time = 0.35 (sec) , antiderivative size = 129, normalized size of antiderivative = 1.05 \[ \int \cot ^2(c+d x) \csc ^3(c+d x) (a+b \sin (c+d x))^2 \, dx=-\frac {3 \, a^{2} {\left (\frac {2 \, {\left (\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )\right )}}{\cos \left (d x + c\right )^{4} - 2 \, \cos \left (d x + c\right )^{2} + 1} - \log \left (\cos \left (d x + c\right ) + 1\right ) + \log \left (\cos \left (d x + c\right ) - 1\right )\right )} - 12 \, b^{2} {\left (\frac {2 \, \cos \left (d x + c\right )}{\cos \left (d x + c\right )^{2} - 1} + \log \left (\cos \left (d x + c\right ) + 1\right ) - \log \left (\cos \left (d x + c\right ) - 1\right )\right )} + \frac {32 \, a b}{\tan \left (d x + c\right )^{3}}}{48 \, d} \]

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)^5*(a+b*sin(d*x+c))^2,x, algorithm="maxima")

[Out]

-1/48*(3*a^2*(2*(cos(d*x + c)^3 + cos(d*x + c))/(cos(d*x + c)^4 - 2*cos(d*x + c)^2 + 1) - log(cos(d*x + c) + 1
) + log(cos(d*x + c) - 1)) - 12*b^2*(2*cos(d*x + c)/(cos(d*x + c)^2 - 1) + log(cos(d*x + c) + 1) - log(cos(d*x
 + c) - 1)) + 32*a*b/tan(d*x + c)^3)/d

Giac [A] (verification not implemented)

none

Time = 0.33 (sec) , antiderivative size = 182, normalized size of antiderivative = 1.48 \[ \int \cot ^2(c+d x) \csc ^3(c+d x) (a+b \sin (c+d x))^2 \, dx=\frac {3 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} + 16 \, a b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 24 \, b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 48 \, a b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 24 \, {\left (a^{2} + 4 \, b^{2}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right ) + \frac {50 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} + 200 \, b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} + 48 \, a b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 24 \, b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 16 \, a b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 3 \, a^{2}}{\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4}}}{192 \, d} \]

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)^5*(a+b*sin(d*x+c))^2,x, algorithm="giac")

[Out]

1/192*(3*a^2*tan(1/2*d*x + 1/2*c)^4 + 16*a*b*tan(1/2*d*x + 1/2*c)^3 + 24*b^2*tan(1/2*d*x + 1/2*c)^2 - 48*a*b*t
an(1/2*d*x + 1/2*c) - 24*(a^2 + 4*b^2)*log(abs(tan(1/2*d*x + 1/2*c))) + (50*a^2*tan(1/2*d*x + 1/2*c)^4 + 200*b
^2*tan(1/2*d*x + 1/2*c)^4 + 48*a*b*tan(1/2*d*x + 1/2*c)^3 - 24*b^2*tan(1/2*d*x + 1/2*c)^2 - 16*a*b*tan(1/2*d*x
 + 1/2*c) - 3*a^2)/tan(1/2*d*x + 1/2*c)^4)/d

Mupad [B] (verification not implemented)

Time = 9.71 (sec) , antiderivative size = 165, normalized size of antiderivative = 1.34 \[ \int \cot ^2(c+d x) \csc ^3(c+d x) (a+b \sin (c+d x))^2 \, dx=\frac {a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4}{64\,d}-\frac {\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )\,\left (\frac {a^2}{8}+\frac {b^2}{2}\right )}{d}+\frac {b^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{8\,d}-\frac {{\mathrm {cot}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4\,\left (\frac {a^2}{4}-4\,a\,b\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+\frac {4\,a\,b\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{3}+2\,b^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\right )}{16\,d}+\frac {a\,b\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{12\,d}-\frac {a\,b\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{4\,d} \]

[In]

int((cos(c + d*x)^2*(a + b*sin(c + d*x))^2)/sin(c + d*x)^5,x)

[Out]

(a^2*tan(c/2 + (d*x)/2)^4)/(64*d) - (log(tan(c/2 + (d*x)/2))*(a^2/8 + b^2/2))/d + (b^2*tan(c/2 + (d*x)/2)^2)/(
8*d) - (cot(c/2 + (d*x)/2)^4*(2*b^2*tan(c/2 + (d*x)/2)^2 + a^2/4 - 4*a*b*tan(c/2 + (d*x)/2)^3 + (4*a*b*tan(c/2
 + (d*x)/2))/3))/(16*d) + (a*b*tan(c/2 + (d*x)/2)^3)/(12*d) - (a*b*tan(c/2 + (d*x)/2))/(4*d)